摘要

针对传统的随机森林算法(RF)在对高维特征数据集计算速度慢、聚类效果不佳的缺陷,提出了一种基于高维特征聚类的随机森林算法(HDFC-RF),首先用传统RF方法对初始高维数据集聚类后,使用K均值聚类(KM)和模糊C-均值(FCM)结合,计算样本相似度,并对聚类特征划分族群,最后通过计算DBI指标,并与相关性阈值δ比较和排序,得到最终的高维特征序列。将HDFC-RF算法应用于高维特征数据集ColonTumor,与传统的RF和FSRF算法比较。实验结果表明,HDFC-RF算法对于高维特征的数据集具有更好的聚类效果、训练速度也更快,具备良好的可行性。