摘要

针对现有的同时定位与建图(SLAM)算法实时性不高和在动态环境中定位精度会大幅降低的缺点,提出了一种复合深度学习与并行计算的DG-SLAM算法。采用基于深度学习的目标检测算法检测出行驶环境中的动态物体,在ORB-SLAM2图像帧间匹配前剔除动态物体特征点,降低动态物体对SLAM定位精度的影响;在ORB-SLAM2跟踪局部地图中采用三维空间下内部点的判别方法区分内点和外点,建立GPU并行计算模型以高效搜索局部地图点;利用Saturated核函数作用于重投影误差项的二范数平方和,确保局部地图优化位姿时重投影误差的并行计算。在KITII数据集上进行了算法验证,结果表明,DG-SLAM具有较高跟踪精度,且平均计算效率相同情况下对比ORB-SLAM2高3.4倍以上,超过85帧/s,可实现自动驾驶车辆在动态环境下SLAM系统的稳定运行。