摘要

针对传统的聚类算法存在隐私泄露的风险,提出一种基于差分隐私保护的谱聚类算法。该算法基于差分隐私模型,利用累计分布函数生成满足拉普拉斯分布的随机噪声,将该噪声添加到经过谱聚类算法计算的样本相似度的函数中,干扰样本个体之间的权重值,实现样本个体间的信息隐藏以达到隐私保护的目的。通过UCI数据集上的仿真实验,表明该算法能够在一定的信息损失度范围内实现有效的数据聚类,也可以对聚类数据进行保护。