摘要
针对水肿区域边界模糊和瘤内结构复杂多变导致的脑胶质瘤分割不精确问题,本文提出了一种基于小波融合和3D-UNet网络的脑胶质瘤磁共振图像自动分割算法.首先,对脑胶质瘤磁共振图像的T1、T1ce、T2、Flair四种模态进行小波融合以及偏置场校正;然后,提取待分类的图像块;再利用提取的图像块训练3D-UNet网络以对图像块中的像素进行分类;最后加载损失率较小的网络模型进行分割,并采用基于连通区域的轮廓提取方法,以降低假阳性率.对57组Brats2018(Brain Tumor Segmentation 2018)磁共振图像测试集进行分割的结果显示,肿瘤的整体、核心和水肿部分的平均分割准确率(DSC)分别达到90.64%、80.74%和86.37%,这表明该算法分割脑胶质瘤准确率较高,与金标准相近.相比多模态图像融合前,该算法在减少输入网络数据量和图像冗余信息的同时,还一定程度上解决了胶质瘤边界模糊、分割不精确的问题,提高了分割的准确度和鲁棒性.
- 单位