摘要
为了解决齿轮箱故障诊断模式识别过程中参数难以确定的问题,引入了一种基于等距特征映射(Isometric feature mapping,Isomap)和改进遗传算法(Improved genetic algorithm,IGA)优化支持向量机(Support vector machine,SVM)参数的方法。首先在自适应最优邻域参数下,对齿轮箱振动信号高维特征集数据进行等距特征映射,通过改进的遗传算法优化支持向量机的惩罚参数和核函数参数,最终实现对降维后数据的识别分类。将所提方法应用于齿轮箱故障诊断,结果表明,所提方法具有较高的诊断正确率,与传统的支持向量机方法相比有更好的诊断效果。
-
单位中国人民解放军陆军工程大学