摘要

在对锚固地层工程特性分析的基础上,提出了6个可指代锚固地层特性的工程相关指标,将3个盾构机可操作参数一并纳入输入特征,并以盾构机贯入度和刀盘扭矩作为盾构机掘进性能的输出指标,构建了一套适用于盾构机穿锚问题预测的模型指标。依托武汉地铁实际工程,收集了盾构机穿锚实时掘进数据,采用LightGBM方法分别搭建了贯入度和刀盘扭矩预测模型,并利用鲸鱼优化算法(WOA)对LightGBM内的超参数进行寻优,最终得到WOALightGBM预测模型。结果表明,构建的盾构机穿锚模型指标具有一定的合理性,可成功预测盾构机穿锚掘进性能;与传统BP、ELM神经网络相比,WOA-LightGBM预测模型耗时相近,在预测精度方面有着明显优势。