摘要

流量加密技术给流量分类带来了新的挑战,为实现加密流量的快速准确分类,提出了一种基于卷积注意力门控循环网络的加密流量分类方法。将卷积神经网络和门控循环单元相结合,针对流量数据的特点,修改卷积神经网络的池化层以提取单个数据包特征,通过注意力机制寻找单个数据包的关键特征并赋予高权重;然后采用门控循环单元提取流层面数据包间的时间序列特征,从包层面和流层面全面反映流量的整体和局部特征。实验证明该方法相对于现有方法,提高了分类准确率、实时性和训练效率。

  • 单位
    空军工程大学信息与导航学院

全文