摘要

针对超密集网络系统提出了一种改进的基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的干扰抑制方法。基站利用附加判断门限条件而改进DBSCAN聚类算法,并对小区里的用户进行分组,将具有相似信道特性的用户聚成一组,使不同分组用户之间的信道相关性较低。再利用比例公平调度选出每组中比例公平系数最高的用户进行传输,调度后的多个用户的空间特性不同的,从而降低空间干扰起到干扰抑制的效果。仿真结果表明,与其他相关2种方法比较,改进方法可有效地降低空间干扰,提高系统吞吐量。