摘要

针对传统汽轮机缺乏有效的预警方法,时常处于被动维护的问题,提出一种基于长短期记忆网络(LSTM)的汽轮机状态预警方法。所提出的方法包含数据预处理模块、健康评价模块和异常预警模块三个模块。首先将源数据进行预处理,去除离群点以及毛刺数据;然后基于自编码神经网络、余弦定理和3σ定理求得一种优化的健康指数;最后基于LSTM建立了汽轮机异常预警模型,并分析对比不同深度的LSTM网络模型与循环神经网络(RNN)预测的结果。最终结果表明:LSTM的最佳预测模型预测结果的平均绝对误差(MAPE)不超过4.31%,比传统RNN的最佳预测模型的准确度更高。因此,所提出的方法在汽轮机异常预警中具有较好的检测准确度。