基于BP神经网络与遗传算法反演大气温湿廓线

作者:张天虎; 鲍艳松*; 钱芝颖; 林利斌; 刘旭林; 李林; 侯岳; 雷红玉; 李广文; 马军; 管琴; 唐维尧
来源:热带气象学报, 2020, 36(01): 97-107.
DOI:10.16032/j.issn.1004-4965.2020.010

摘要

为提高地基微波辐射计大气探测精度,融合BP神经网络与遗传算法,研究0~10 km大气温湿度廓线。首先,结合数据特征,基于数值模拟技术,建立一套TP/WVP-3000型号地基微波辐射计的一级数据质量控制和订正模型。然后,为减小训练样本代表性误差对模型反演精度的影响,利用遗传算法优化训练样本数据,建立一套精度更高的神经网络大气温湿度反演模型。最后,利用构建的反演模型,开展大气温湿度反演试验,结合探空资料和微波辐射计二级产品,评价反演模型精度。研究结果表明:(1)经过质量控制后的实测数据与模拟数据之间的相关性有显著提升;(2)经过质量控制与订正后建立的神经网络模型对比原微波辐射计二级产品的反演精度有一定提升,温度提升6.77%,湿度提升20.11%;(3)经过遗传算法优化后的训练样本所建立的神经网络反演模型对比原微波辐射计二级产品反演精度有进一步的提升,温度提升10.21%,湿度提升23.75%,反演结果与该地区同类型研究结果相比有着较大提升。

全文