摘要
迁移学习智能故障诊断方法已经成为了机械设备故障诊断领域的一个研究热点。然而,大多数相关方法在迁移学习过程中未能合理地评估源域样本和目标域样本的相似性,且数据分布的差异会造成迁移诊断的结果不同。针对此问题,提出深度卷积动态对抗迁移网络用于主轴轴承智能故障诊断。该网络首先利用一维卷积神经网络从处理过的振动信号中自动提取特征集,然后利用动态对抗学习策略动态地调整条件分布和边缘分布在迁移学习过程中的重要程度,有效地提高迁移诊断的精度。通过数控机床主轴轴承故障诊断实验,验证了所提方法的有效性。实验结果表明,所提方法能够有效挖掘故障特征信息,实现不同工况之间的知识迁移,具有较好的应用价值。
- 单位