摘要
贷款信用风险评估是银行风控的重要内容。贷款逾期天数作为常见的风险度量指标,具有典型的零膨胀特征。对于零膨胀数据,传统的线性回归不再适用,两部模型是常用的代表方法。考虑到贷款数据具有偏态分布特征,本文构建了一个分位数两部模型—logit-quantile模型。该模型由Logistic回归和分位数回归构成,为了进行风险因素的选择,在模型的两个回归中添加了Lasso惩罚。为了求解模型,本文采用了坐标下降法和线性规划法相结合的迭代算法。模拟分析显示,对比逐步法和常用的logit-linear两部模型,新模型表现出了最好的变量选择效果,尤其在零膨胀比例为80%及高维情形时,该模型的表现仍然最优。最后对某银行的贷款数据实证分析显示,新模型具有更精简的结构,采用交叉验证技术进行预测显示新模型的预测和分类表现最好。
-
单位湖南大学; 中国人民银行