摘要
局部切空间排列算法(local tangent space alignment,简称LTSA)是一种新的流形学习算法,能有效地学习出高维采样数据的低维嵌入坐标,但也存在一些不足,如不能处理样本数较大的样本集和新来的样本点.针对这些缺点,提出了一种基于划分的局部切空间排列算法(partitional local tangent space alignment,简称PLTSA).它建立在VQPCA(vector quantization principal component analysis)算法和LTSA算法的基础上,利用X-均值算法把样本空间划分成一些相互有重叠的块,通过把样本点投影到它所在块的局部切空间上得到其局部低维坐标,对局部低维坐标施加平移、旋转、伸缩变换,求出整体低维坐标.PLTSA解决了VQPCA不能求出整体低维坐标和LTSA中大规模矩阵的特征值分解问题,且能够有效处理新来的样本点,这是很多流形学习算法所不能的.通过实验说明了PLTSA的有效性.
-
单位中国科学院