摘要

文本情感分析是自然语言处理领域一个重要的分支。现有深度学习方法不能更为全面地提取文本情感特征,且严重依赖于大量的语言知识和情感资源,需要将这些特有的情感信息充分利用使模型达到最佳性能。该文提出了一种融合卷积神经网络与双向GRU网络的文本情感分析胶囊模型。该模型首先使用多头注意力学习单词间的依赖关系、捕获文本中情感词,利用卷积神经网络和双向GRU提取文本不同粒度的情感特征,特征融合后输入全局平均池化层,在得到文本的实例特征表示的同时,针对每个情感类别结合注意力机制生成特征向量构建情感胶囊,最后根据胶囊属性判断文本情感类别。模型在MR、IMDB、SST-5及谭松波酒店评论数据集上进行实验,相比于其他基线模型具有更好的分类效果。