一种面向智联网的高效联邦学习算法

作者:叶进; 韦涛; 胡亮青; 罗森; 李晓欢
来源:计算机工程, 2023, 49(12): 243-261.
DOI:10.19678/j.issn.1000-3428.0066803

摘要

在智联网(AIoT)中引入联邦学习(FL)可以加强数据的隐私保护,然而分布式AIoT设备间的数据通常是非独立同分布的,标准的FL模型训练算法会使模型训练时出现客户机漂移的现象,导致收敛缓慢和不稳定。针对此问题,提出基于全局动量的联邦学习算法FedCNM。FedCNM将在AIoT服务器聚合的全局梯度信息发送至AIoT设备,让AIoT设备可以根据全局梯度信息来初始化本地模型,并标准化客户机模型的参数更新,以全局动量的方式平滑客户机模型的更新来缓解客户机漂移问题,加快模型的训练。在CIFAR-10和CIFAR-100数据集上模拟大规模设备、部分参与和不同数据分布场景进行仿真实验,结果表明,较对比方法,FedCNM在各种任务上训练的模型可以提高1.46%~11.12%的测试精度,且完成各种学习任务所需要的通信量最少。在CIFAR-10数据集上对比SGD+M、NAG、Adam和AMSGrad这4个本地优化器对算法的影响,实验结果表明,当本地使用基于动量的优化器SGD+M和NAG时,分别提高了10.53%和10.44%的测试精度。

全文