摘要
在深度学习领域中,多变量时间序列预测的关键是充分捕获其长、短期的依赖。通常的做法是使用卷积神经网络(CNN)来提取多变量时间序列的短期依赖。但是目前的大多数方法都仅仅使用了一种尺寸的卷积核来提取短期依赖,这样就只提取到了一种时间跨度的短期依赖,使得序列的短期依赖关系没有被充分学习到。受多尺度特征提取和通道注意力机制的启发,提出了一种基于时间跨度注意力的神经网络(TSANN)方法,通过充分利用短期依赖来提高多变量时间序列预测的准确度。首先,使用一系列不同大小的卷积核来提取不同时间跨度的短期依赖。然后使用时间跨度注意力将这些特征融合起来并送入循环神经网络(RNN),进一步提取长期特征。另外,与其他方法直接将非线性部分和线性部分的输出相加不同,采用了一个权重学习模块来整合非线性部分和线性部分的输出。在四个基准数据集上进行了实验,结果表明TSANN能有效提高多变量时间序列预测的准确度。
- 单位