摘要

针对森林资源分类研究较少且缺少相对简单有效的方法的情况,提出一种结合面向对象和随机森林的森林资源分类方法。面向对象分割技术可减少"椒盐效应",随机森林分类算法具有高准确度、抗噪声能力强、性能稳定等优势。鉴于此,通过调整面向对象的分割参数,构造最优特征空间及估算随机森林中决策树的数量等,构建了最优的面向对象随机森林分类模型。另外,选择了SVM算法作对比试验。试验结果显示,本文分类算法的总体精度达到83.34%,Kappa系数为0.789 2,明显高于SVM,能够有效提高森林资源分类的精度。