摘要
场景图像分割一直是机器视觉学习中较为复杂的重难点问题.本文在机器视觉注意力机制学习方法的基础上,融合人类对事物个体的认知,提出场景对象的Focus+Context语义表征,将对象类别信息带入图像底层特征学习中,运用概率统计理论,在抽象层上建模局部区域对象,再联合上下文语义信息推理全局与局部区域对象之间的关系,以实现类内焦点对象(Focus)突出的场景语义分割.实验验证,基于Focus+Context的语义表征和建模能够增加对象的识别率,尤其是在小样本环境下,所提出的方法能极大地简化场景的理解.
- 单位