基于YOLOv5的草莓轻量化网络检测模型

作者:杨世忠; 王瑞彬*; 高升; 邵明伟
来源:国外电子测量技术, 2023, 42(04): 86-95.
DOI:10.19652/j.cnki.femt.2304668

摘要

随着现代农业技术的发展,草莓生产和采摘的自动化是一个必然的趋势,而草莓目标检测是实现采摘自动化的关键环节。基于YOLOv5目标检测算法,采用ShuffleNet轻量级网络结构替代原模型的特征提取网络,并在骨干网络提取的特征图后加入SE通道方向的注意力机制,结合EIoU和Alpha-IoU损失函数,设计了一个α-EIoU损失函数,给定参数α的值为3,统一指数化IoU损失函数,据此获得更准确的边界框回归和目标检测。改进的模型在草莓小目标数据集上平均检测精度均值达到了97.6%,其中成熟草莓的准确率为99.4%,与YOLOv3、YOLOv4和YOLOv5相比,平均精度均值(mAP)分别提高了5.4%、2.9%和1.1%,该模型识别图像传输帧率为125 fps,比原YOLOv5模型提升了38 fps,该实验模型更适应于移动端部署,为草莓采摘识别的自动化提供了一些理论基础。

全文