摘要
针对原ORB描述符算法匹配精度低、匹配耗时长,动态场景中移动的物体严重影响视觉SLAM系统的定位精度和鲁棒性,以及ORB-SLAM3系统只能构建稀疏点云地图,无法构建稠密地图的问题,提出一种基于BEBLID描述符和目标检测的改进型ORB-SLAM3。首先,在跟踪线程中融合轻量级YOLOv5s动态目标检测网络和动态特征剔除模块,提高系统的定位精度;其次,利用增强高效局部图像描述符BEBLID代替原特征描述算法,与原ORB特征提取方法结合,增强图像的表现力和描述效率,提升特征匹配精度和效率;最后,增加稠密建图线程,根据关键帧与相应位姿完成稠密点云地图的构建。在公开TUM RGB-D数据集上的实验表明,与原ORB-SLAM3相比,所提算法特征匹配精度提高了7%以上;在高动态环境下系统定位精度提高98%以上,在低动态环境下最大提升60%以上,有效提高了系统在动态环境下的定位精度和鲁棒性;并构建了三维稠密点云地图,为后续应用于机器人自主导航、避障和路径规划等工作奠定了基础。
- 单位