摘要
针对现有备件分类中存在的备件种类繁多、属性复杂多样及分类标注不统一等问题,文中提出了一种基于邻域粗糙集的支持向量机(NRS-SVM)的多准则备件分类方法。首先,基于历史数据使用邻域粗糙集理论对备件属性进行约简,再将约简后的属性及数据输入支持向量机算法训练分类模型,最后可以将训练好的模型对真实的备件集进行分类。该方法对一家卷烟厂的实际备件数据进行试验验证,结果表明:基于邻域粗糙集的支持向量机在Z企业备件分类中具有高的分类准确率和优秀的泛化能力,验证了所提方法的有效性和优越性,从而更好地支持备件的管理。
-
单位湖北中烟工业有限责任公司; 上海交通大学