摘要

深度卷积网络由于强大的特征学习及表征能力在图像超分辨率领域取得了广泛的应用,伴随图像超分辨率模型的不断发展,复杂的模型带来了庞大的参数量以及越来越高的计算需求.为了提升参数的复用并抑制特征冗余信息在迭代反馈中的传播,本文引入了反馈机制,并提出了一种新的基于深度反馈注意力的超分辨率网络模型(Deep Feedback Attention Network,DFAN).本文提出的模型在每一轮训练中,以迭代的方式学习图像低分辨率到高分辨率的映射,并在迭代的过程中结合反馈注意力机制提高模型学习的准确性,从而进一步提升超分辨率结果的质量.本文提出的模型在单图像超分辨率基准测试集Set5的×2/×3/×4倍率重建任务上,最高分别达到了38.04/34.65/32.41db的峰值信噪比.