摘要
为了进一步降低隐写分析算法的检测错误率,文章提出一种基于卷积神经网络(convolutional neural network, CNN)和长短期记忆网络(long short-term memory, LSTM)的隐写分析算法。该算法利用CNN捕获载体图像的结构特征,同时利用LSTM捕获图像的前后时序特征。为了验证混合神经网络的有效性,该算法以XuNet和SRNet为基准隐写分析网络,探讨CNN与LSTM的有效组合方式。实验结果表明,所提方法可以有效提高隐写分析算法的检测能力。
-
单位合肥工业大学; 安徽广播影视职业技术学院