摘要
针对传统Apriori算法处理速度和计算资源的瓶颈,以及Hadoop平台上Map-Reduce计算框架不能处理节点失效、不能友好支持迭代计算以及不能基于内存计算等问题,提出了Spark下并行关联规则优化算法.该算法只需两次扫描事务数据库,并充分利用Spark内存计算的RDD存储项集.与传统Apriori算法相比,该算法扫描事务数据库的次数大大降低;与Hadoop下Apriori算法相比,该算法不仅简化计算,支持迭代,而且通过在内存中缓存中间结果减少I/O花销.实验结果表明,该算法可以提高关联规则算法在大数据规模下的挖掘效率.
-
单位中国科学院计算技术研究所; 四川师范大学; 四川省计算机研究院