摘要
针对机电设备早期故障难以识别的问题,提出了一种动态的概率密度估计方法———滑动概率神经网络,用以跟踪分析测量信号的概率密度变化过程,及时发现早期故障.该网络以固定不变的抽样集作为第一层,动态滑动的测量信号作为样本层,通过求和层得到抽样集的条件概率密度估计,将样本层内测量信号的概率密度动态地投影到统一的抽样集上.将网络分解成以测量值为中心的子网络,来实现网络的递归运算,并且利用高斯函数的快速衰减特性或使用分段线性函数近似高斯函数,从而提高了网络的计算实时性.通过压缩机喘振过程数据的应用实例,表明该方法能够有效识别故障的早期征兆.
-
单位西安交通大学机械制造系统工程国家重点实验室; 西安交通大学