摘要
由于文本分类中的特征空间高维稀疏,传统单一的降维方法难以满足实际大数据分类需求。针对这种情况,提出一种两阶段的混合特征选择方法。第一阶段计算每个特征词的信息增益率并进行排序,然后根据设定的阈值进行特征词的选择。第二阶段利用主成分分析方法将第一阶段输出的仍保持高维特性的高维特征空间映射到低维新特征空间。实验结果表明,与单一的传统方法比较,混合特征选择方法实现了二次降维,不但减少了计算开销,还提高了分类性能。
-
单位中国政法大学; 中国石油大学(北京)