摘要

针对经典人脸识别卷积神经网络(CNN)结构中因网络层次设计过深导致计算量大且训练耗时长的问题,设计一种改进的卷积神经网络结构,该结构由3个卷积层、3个池化层、1个全连接层和1个分类层组成。利用Softmax回归算法进行人脸分类识别,卷积神经网络在输出层利用改进的Softmax进行分类。实验结果表明:在AR人脸库上,所述方法的识别率接近100%,优于传统人脸识别方法,其训练速度也明显快于普通的卷积神经网络,验证了改进方法的有效性。