摘要

机载气象雷达系统进行气象探测时易受到强地杂波的干扰,从而导致目标信息丢失。为准确检测地杂波中的气象目标,获取完整的目标信息,本文提出了一种基于卷积神经网络(Convolution Neural Networks,CNN)的机载气象雷达目标检测方法。该方法联合时域、多普勒域和俯仰维空域信息,将杂波相位对准指标、多普勒速度和干涉相位作为CNN的输入,并给出详细的网络结构。本文通过模拟雷达回波仿真产生训练集和测试集,并对所提网络进行训练和测试。仿真结果表明,与目前的气象目标检测方法相比,该方法具有较高的检测概率,而且在谱矩信息变化的情况下仍可维持较好的检测性能,具有很好的鲁棒性。此外,仿真结果表明CNN比传统的贝叶斯分类器和支持向量机等分类网络具有更好的分类性能。