基于改进BiSeNetV2的裂缝检测与识别

作者:马俊祺*; 陶星珍; 彭霖; 谢宇飞
来源:有色金属科学与工程, 2022, 13(06): 91-97.
DOI:10.13264/j.cnki.ysjskx.2022.06.012

摘要

裂缝作为固体材料中较为常见的某种不连续现象,是固体结构破坏的开始,及时对裂缝进行识别和检测,并对检测结果进行分析,采取相对应的措施,能够较好地防止事故发生,保障工程作业中的安全。目前裂缝识别主要依靠人工检测,存在劳动强度大、耗时长、精确度不高、危险、耗费高等问题,为此基于数字图像处理技术的裂缝智能识别被广泛研究,然而裂缝表面纹理不规则、噪声的复杂信息,影响了识别精度。为了解决常见固体材料的裂缝智能识别问题,提出了以轻量级语义分割网络模型BiSeNetV2来进行裂缝自动检测,同时自主构建裂缝数据集。实验表明,改进后的裂缝识别模型识别精度提升了7.6%。基于BiSeNetV2的裂缝识别模型,能对裂缝进行精准检测和识别,解决人工识别存在的各类问题。

全文