摘要

针对拍摄场景中物体运动不一致所带来的非均匀模糊,为提高复杂运动场景中去模糊的效果,提出一种多尺度编解码深度卷积网络。该网络采用"从粗到细"的多尺度级联结构,在模糊核未知条件下,实现盲去模糊;其中,在该网络的编解码模块中,提出一种快速多尺度残差块,使用两个感受野不同的分支增强网络对多尺度特征的适应能力;此外,在编解码之间增加跳跃连接,丰富解码端信息。与2018年国际计算机视觉与模式识别会议(CVPR)上提出的多尺度循环网络相比,峰值信噪比(PSNR)高出0.06 dB;与2017年CVPR上提出的深度多尺度卷积网络相比,峰值信噪比和平均结构相似性(MSSIM)分别提高了1.4%和3.2%。实验结果表明,该网络能快速去除图像模糊,恢复出图像原有的边缘结构和纹理细节。