摘要
为提高气体绝缘组合电器(Gas insulated switchgear,GIS)局部放电类型诊断的精度,提出了一种基于EWT-FE结合IHPO-SVM算法的GIS局部放电诊断方法。为深度挖掘局部放电信号内部特征,利用经验小波变换(Empirical wavelet transform,EWT)结合模糊熵(Fuzzy entropy,FE)算法对信号进行分解,并提取有效特征量;为提高支持向量机(Support vector machine,SVM)算法自适应能力与分类识别精度,提出利用经过余弦衰减计算方法以及指数下降函数改进的猎人猎物优化(Improved hunter-prey optimizer,IHPO)算法对SVM算法参数进行优化选取;搭建GIS局部放电试验模型,建立基于EWT-FE信号分析结合IHPO-SVM的局部放电识别模型,对所提算法有效性进行验证。试验结果表明,所提算法GIS局部放电类型诊断精度均大于95%,优于传统诊断算法。
- 单位