摘要

目的医学图像的像素级标注工作需要耗费大量的人力。针对这一问题,本文以医学图像中典型的眼底图像视盘分割为例,提出了一种带尺寸约束的弱监督眼底图像视盘分割算法。方法对传统卷积神经网络框架进行改进,根据视盘的结构特点设计新的卷积融合层,能够更好地提升分割性能。为了进一步提高视盘分割精度,本文对卷积神经网络的输出进行了尺寸约束,同时用一种新的损失函数对尺寸约束进行优化,所提的损失公式可以用标准随机梯度下降方法来优化。结果在RIM-ONE视盘数据集上展开实验,并与经典的全监督视盘分割方法进行比较。实验结果表明,本文算法在只使用图像级标签的情况下,平均准确识别率(mAcc)、平均精度(mPre)和平均交并比(mIoU)分别能达到0. 852、0. 831、0. 827。结论本文算法不需要专家进行像素级标注就能够实现视盘的准确分割,只使用图像级标注就能够得到像素级标注的分割精度。缓解了医学图像中像素级标注难度大的问题。