摘要

针对传统滚动轴承诊断方法在强噪声干扰下正确率低、特征选取依赖经验、模型泛化能力差的局限性,提出一种基于降噪多分支卷积神经网络(convolution neural network, CNN)和注意力机制的滚动轴承故障端到端诊断方法。通过设计多分支CNN特征提取网络,实现了包含原始信号及其频谱、时域滤波信号在内的多域特征提取;进一步引入注意力机制对各分支的输出进行权重自适应分配,在增强各域有效特征的同时抑制其无效特征对诊断结果的影响,提升模型的鲁棒性和泛化能力;最后再利用基于全局平均池化层构造的分类CNN实现滚动轴承故障的端到端诊断。对比试验证明,所设计的模型能在强噪声干扰下实现更准确的轴承故障诊断。

全文