摘要
人工智能目前在诸多领域均得到较好应用,然而通过对抗样本会使神经网络模型输出错误的分类。研究提升神经网络模型鲁棒性的同时如何兼顾算法运行效率,对于深度学习在现实中的落地使用意义重大。针对上述问题,本文提出一种基于条件对抗生成网络的对抗样本防御方法 Defense-CGAN。首先使用对抗生成网络生成器根据输入噪声与标签信息生成重构图像,然后计算重构前后图像均方误差,对比选取重构图像馈送到分类器进行分类从而去除对抗性扰动,实现对抗样本防御,最后,在MNIST数据集上进行大量实验。实验结果表明本文提出的防御方法更加具备通用性,能够防御多种对抗攻击,且时间消耗低,可应用于对时间要求极其苛刻的实际场景中。
- 单位