摘要
数字全息显微镜(DHM)可以对生物样本的复杂波前进行数值重建,但是物体波前存在二次相位畸变和高阶像差,使得成像物体存在一定的相位像差。基于此,提出一种基于径向基神经网络(RBF)的相位畸变补偿算法。使用RBF网络构建非线性函数,最小化损失函数来估算物体的实际相位,损失函数考虑了全息面和RBF网络的输出。在仿真中以原模型为基准计算全局的均方误差,所提算法的均方误差为0.0374,主成分分析法(PCA)的为0.0470,频谱质心法(SCM)的为0.3303。搭建DHM系统用于HL60细胞的成像幅度和相位对比度观察,结果显示,所提算法能够更好地消除载波频率和相位畸变。所提算法无需了解光学参数,且可以通过调整采样点数量控制计算时间和插值精度,在弱散射物体或微纳结构三维形态测量中具有潜在的应用前景。
- 单位