摘要
提出了一种基于Fisher线性鉴别特征融合的海底底质分类方法。首先,分析了声学遥感可以进行海底底质分类与识别,但是现有的分类方法,存在特征量维数较大、分类器设计复杂、分类效果不佳、不能获得最佳鉴别矢量等缺陷。因此,提出一种基于Fisher线性鉴别特征融合的海底底质分类方法。该方法首先提取同一样本的12个统计特征量,然后利用特征融合技术将这12个特征量组合在一起,构成一个新的特征矢量空间,最后在该空间中利用Fisher线性鉴别分析进行最优鉴别特征提取。其次,以岩石、砾石、沙、泥四种沉积物为实验对象来开展水下实验。对回波数据进行预处理,然后对每一样本提取12个统计特征量,采用串行融合方法进行特征组合,最后采用Fisher线性判别分析得到最佳鉴别矢量特征,并送入最近邻分类器进行分类。最后,通过大量的实验数据对比,发现基于Fisher线性鉴别特征融合的海底底质分类方法比PCA方法和单一特征方法具有更高的正确分类率。
-
单位机电工程学院; 长沙学院