摘要

针对人体行为识别领域传统方法特征提取复杂、分类准确率低的问题,提出了一种基于深度置信网络-支持向量机(DBN-SVM)的行为识别模型。首先,为了更好地捕捉用户行为的周期性变化,引入滤波器对行为信号进行降噪、滤波和加窗分段处理;其次,提出了DBN-SVM模型,将预处理得到的行为时频信号作为模型的可视层输入,通过DBN自动提取行为数据特征,结合SVM实现行为的分类识别。最后,实验中将该模型应用于多个行为数据集,并与传统的机器学习方法进行对比,结果表明,该方法的行为识别结果较传统的机器学习方法效率提升了4%~15%,可以更精准地实现活动分类,提高行为识别性能。

  • 单位
    国网电力科学研究院武汉南瑞有限责任公司

全文