摘要

为高效精确地预测无信号环形交叉口机动车与非机动车的交通冲突,提出了基于遗传算法优化的BP神经网络(genetic algorithm and back propagation, GA-BP)和支持向量回归(support vector regression, SVR)的组合预测模型(SVR-GA-BP)。通过无人机采集混合交通流高清视频,利用视频识别软件Tracker提取机非交通冲突轨迹数据,以距离碰撞时间(time to collision, TTC)为判别指标,确定机非冲突严重程度。基于偏相关性分析确定交通量、平均速度、大车比例等为机非交通冲突的显著影响因素,选取均方根误差(root mean squared error, RMSE)、平均绝对误差(mean absolute error, MAE)等五种评价指标对SVR模型、BP神经网络、SVR-GA-BP模型的预测值进行精度分析。结果表明,组合模型在一般冲突预测中精度为97.1%,相比SVR和BP神经网络分别提高6.9%和2.5%,在严重冲突预测中精度为96.1%,相比SVR和BP神经网络分别提高7.3%和5.1%。可见SVR-GA-BP组合模型能够有效预测无信号环形交叉口的机非冲突且精度最高,可为同类型交叉口的安全评价提供借鉴。