有监督的隐狄里克雷分配(s-LDA)模型在分类时不能处理多标签问题,且存在部分主题未正确分配从而导致分配主题精确度下降。为此,在给予响应变量的基础上加入类别标签,构建一种带标签的有监督的隐狄里克雷分配(sl-LDA)模型。分析s-LDA模型以及该模型主题分类存在的问题,通过验证sl-LDA模型的分类精度,对sl-LDA模型与s-LDA模型进行新闻主题分类实验。在中文和英文新闻语料库上的实验结果表明,英文语料库分类精度提高约3.80%,中文语料库提高约1.77%。