摘要
研究了在较低信噪比下,在保证检测概率的前提下尽量降低虚警概率的目标检测,提出了一种针对特定目标的两阶段筛选算法.第一阶段中,首先使用阈值分割出有效点,并定义了一种新的像素重要性测量特征用于初步筛选目标。即通过有效像素点之间的距离来赋以高斯分布的权值,当前像素重要性的值定义为剩余有效点的距离加权和,具有较高的像素重要性值的聚集性强的区域内像素点会被定位出来。第二阶段,使用卷积神经网络分类器排除虚假目标.在实验中,使用近期无人潜器获得的海底数据,召回率与虚警概率分别达到90.39%与2.39%,证明了其相比声呐目标检测主流算法有更好的检测能力。
-
单位工业和信息化部; 哈尔滨工程大学