摘要

为解决雨洪管理模型(SWMM)在率定过程中参数复杂、过程繁琐等问题。以西宁市某地块为例建立SWMM模型,利用Morris筛选法进行参数灵敏度分析,并根据灵敏度分析的结果进行人工率定;另外利用BP神经网络对模型进行率定,并结合参数灵敏度对其进行优化。对3种率定方案进行分析,结果表明:水文水力模块参数的相对灵敏度基本一致,其中灵敏度较大的参数为子汇水区面积(Area)、不透水率(Imperv)和不透水区洼地蓄积量(Destore-Imperv),并且不同降雨条件下模型参数的灵敏度存在差异。经过优化后的BP神经网络参数率定方法的模型模拟效果最好,纳什系数最大。结合灵敏度优化BP神经网络的人机联合率定方法一方面能提高BP神经网络率定的准确性,另一方面又能提高传统人工率定的效率。