摘要
针对材料服役性能预测存在误差大、计算复杂、适用性差等问题,提出了基于数据挖掘的机器学习预测方法。首先阐述了机器学习的应用流程,并总结了常用模型原理及其在材料性能预测中的应用。然后采用多种机器学习模型对RPV钢的辐照性能进行预测,并通过Stacking集成方法提高了模型的预测精度。结果表明,机器学习可用于材料服役性能预测,具有较高的预测精度和可靠性。根据材料服役数据的不同特征选择合适的学习模型,同时进行模型融合和参数优化,可有效提高模型的预测精度及运算速度。
- 单位
针对材料服役性能预测存在误差大、计算复杂、适用性差等问题,提出了基于数据挖掘的机器学习预测方法。首先阐述了机器学习的应用流程,并总结了常用模型原理及其在材料性能预测中的应用。然后采用多种机器学习模型对RPV钢的辐照性能进行预测,并通过Stacking集成方法提高了模型的预测精度。结果表明,机器学习可用于材料服役性能预测,具有较高的预测精度和可靠性。根据材料服役数据的不同特征选择合适的学习模型,同时进行模型融合和参数优化,可有效提高模型的预测精度及运算速度。