摘要

股票市场结构复杂、信息多样,股票趋势预测极具挑战性。但现有研究大都把每只股票当作一个独立的个体,或者使用图结构对股票市场中复杂的高阶关系进行建模,缺少对股票、行业、市场三者间相互影响的层次性和动态性考量。针对上述问题,提出一种动态宏观记忆网络(DMMN),并基于DMMN同时对多只股票进行价格趋势预测。该方法按照“股票-行业-市场”的层次对市场宏观环境信息进行建模,并捕获这些信息在时序上的长期依赖;然后将市场宏观环境信息与股票微观特征信息动态融合,在增强个股对市场整体情况的感知能力的同时间接捕获到股票、行业、市场三者间的相互依赖。在收集的CSI300数据集上得到的实验结果表明,相较于基于注意力长短期记忆(ALSTM)网络、添加了图卷积的LSTM网络(GCN-LSTM)、卷积神经网络(CNN)等模型的股票预测方法,基于DMMN的方法在F1分数、夏普比率上都取得了更好的效果,和表现最优的对比方法 ALSTM相比分别提升了4.87%和31.90%,这表明DMMN在具备较好预测性能的同时还具备更好的实用价值。