摘要

基于Subbagging的支持向量回归(SVR)集成预测方法的目的有两个方面:一是理论分析上使得集成预测统计量成为不完全U统计量,二是计算上使得SVR复杂度显著降低.系统地研究了该方法的建模过程,重点讨论了采样尺寸参数对预测精度的影响,并通过真实案例分析验证了所建立的SVR集成预测方法的有效性.