摘要

为尽早发现风电机组早期故障,减少风电场的运维成本,提出一种基于功率曲线分析与神经网络的故障预警方法。首先,依据功率特性曲线,使用最小二乘与离散度分析结合的算法对SCADA数据进行筛选,以保留符合机组正常工况的数据作为建模的训练数据,从而提高模型的精度。然后,使用随机森林算法筛选模型的输入参数以简化模型结构,并通过对比隐含层的数目建立风电机组的神经网络模型。最后,结合滑动窗口模型,提出一种能反映机组实时运行状态的指标,并通过非参数估计法确定该指标的阈值,以实现状态预警及在线监测。该方法充分利用SCADA数据,且不需要对风电机组复杂的物理特性进行分析。将该方法分别用于某风电场的变桨系统和偏航系统的故障预警,实验结果是分别提前18.5 h和28.4 h出现预警信号,进一步证明方法的有效性。