摘要
对建筑工人施工行为的自动化识别是建设施工质量安全以及工作效率实时管理的核心方法,需要建筑、信息、管理等多领域交叉集成。该文以钢筋工为例,利用加速度传感器在工地现场采集钢筋工施工过程中手腕处运动的加速度数据,将钢筋工的所有行为分为3类。从加速度数据中提取特征值,应用分类器进行机器学习实验并进行精度对比,得出最佳分类器和最佳特征值。实验结果表明:最佳特征值与数据片段长度有关;在一定范围内,数据片段越长,识别精度越高;识别精度最高达到了85.9%,与以往研究相比,对工人行为的分类更细致且达到的精度更高。该研究为工程现场典型工种的动作识别提供了方法,为建筑工人行为的自动化实时监控、施工质量安全和效率管理奠定了基础。
-
单位清华大学; 水沙科学与水利水电工程国家重点实验室