摘要
交通标志检测在自动驾驶领域一直是个比较热门的课题。在深度学习算法中,YOLOv3和Faster R-CNN已经获得了极好的目标检测性能,但在检测小目标时,存在漏检的情况。针对交通标志检测中小目标准确快速识别的需求,本文提出一种轻量级YOLOv3的交通标志检测算法。通过卷积神经网络同时使用浅层和深层的特征提取,得到多尺度特征图,深层特征可以有效地保持检测精度不下降,浅层特征可以有效地提高小目标检测任务的精度。通过剪枝算法对模型进行压缩,将训练好的模型进行稀疏训练,把一些不重要的卷积核通道删除掉,对剪枝后的模型微调,保持模型文件中参数的平衡,同时保持检测精度。实验结果表明,通过提取多尺度特征图的方法模型准确率提高了2.3%,通过剪枝算法对模型压缩,使模型的权重大小减小了70%,模型的检测时间节省了90%。由此建立了鲁棒性更强的轻量级交通标志检测模型,可以部署在移动端嵌入式设备上,不再占用庞大的GPU计算资源即可提高检测效率。
- 单位