摘要

果园环境实时检测是保证果园喷雾机器人精准作业的重要前提。本文提出了一种基于改进DeepLab V3+语义分割模型的果园场景多类别分割方法。为了在果园喷雾机器人上部署,使用轻量化MobileNet V2网络替代原有的Xception网络以减少网络参数,并在空洞空间金字塔池化(Atrous spatial pyramid pooling, ASPP)模块中运用ReLU6激活函数减少部署在移动设备的精度损失,此外结合混合扩张卷积(Hybrid dilated convolution, HDC),以混合扩张卷积替代原有网络中的空洞卷积,将ASPP中的扩张率设为互质以减少空洞卷积的网格效应。使用视觉传感器采集果园场景RGB图像,选取果树、人、天空等8类常见的目标制作了数据集,并在该数据集上基于Pytorch对改进前后的DeepLab V3+进行训练、验证和测试。结果表明,改进后DeepLab V3+模型的平均像素精度、平均交并比分别达到62.81%和56.64%,比改进前分别提升5.52、8.75个百分点。模型参数量较改进前压缩88.67%,单幅图像分割时间为0.08 s,与原模型相比减少0.09 s。尤其是对树的分割精度达到95.61%,比改进前提高1.31个百分点。该方法可为喷雾机器人精准施药和安全作业提供有效决策,具有实用性。