摘要
标准果蝇优化算法(fruit fly optimization algorithm, FOA)在迭代寻优的过程中,整个果蝇群体只向最优个体靠近,这导致算法极易陷入局部最优,从而引起早熟收敛的问题。针对该问题,提出一种新的双策略进化果蝇优化算法(a novel double strategies evolutionary fruit fly optimization algorithm, DSEFOA)。提出的一种新的群体分割策略,将果蝇群体动态地划分为精英子群和普通子群;对于精英子群,引入混沌变量引导果蝇个体在其附近搜索食物,优化其局部搜索能力;对于普通子群,引入权重因子改进标准FOA的随机搜索方式,执行全局搜索,加快收敛速度。DSEFOA算法针对不同进化水平的果蝇个体采用不同的策略更新进化,充分地提升了整个群体的寻优搜索能力。8个测试函数的仿真试验结果表明,DSEFOA算法有比标准FOA算法更好的优化性能。
- 单位