摘要
融合卷积神经网络(convolutional neural network, CNN)和双向长短期记忆网络(Bi-directional long short-term memory, BiLSTM)的情感分析模型(CNNBiLSTM)是一个流行的模型,其学习文本的局部特征和全局特征实现情感分类,但是忽略了特征对分类结果的重要程度,且没充分利用词语间的特征,导致分类准确率不高.提出一种集成基于多卷积核的卷积神经网络和注意力双向长短期记忆网络特征的文本情感分类方法(MCNNAtt-BiLSTM),其集成局部和全局的重要特征作为文本语义特征,该特征进而用于训练文本情感分类器XGBoost(eXtreme gradient Boosting).该方法基于注意力机制的BiLSTM提取对分类影响大的全局关键特征,基于多卷积核的CNN获得更全面的词语间特征,为集成分类器准备了有效分类的特征.实验结果表明,该模型具有更好的情感分类准确率,与CNNBiLSTM模型相比,在IMDB数据集上准确率提升了1.75%,在txt-sentoken数据集上准确率提升了1.67%,在谭松波-酒店评论数据集上准确率提升了3.81%.
-
单位河北地质大学; 河北中医学院